Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions.

نویسندگان

  • Paulo Artaxo
  • Luciana V Rizzo
  • Joel F Brito
  • Henrique M J Barbosa
  • Andrea Arana
  • Elisa T Sena
  • Glauber G Cirino
  • Wanderlei Bastos
  • Scot T Martin
  • Meinrat O Andreae
چکیده

In the wet season, a large portion of the Amazon region constitutes one of the most pristine continental areas, with very low concentrations of atmospheric trace gases and aerosol particles. However, land use change modifies the biosphere-atmosphere interactions in such a way that key processes that maintain the functioning of Amazonia are substantially altered. This study presents a comparison between aerosol properties observed at a preserved forest site in Central Amazonia (TT34 North of Manaus) and at a heavily biomass burning impacted site in south-western Amazonia (PVH, close to Porto Velho). Amazonian aerosols were characterized in detail, including aerosol size distributions, aerosol light absorption and scattering, optical depth and aerosol inorganic and organic composition, among other properties. The central Amazonia site (TT34) showed low aerosol concentrations (PM2.5 of 1.3 +/- 0.7 microg m(-3) and 3.4 +/- 2.0 microg m(-3) in the wet and dry seasons, respectively), with a median particle number concentration of 220 cm(-3) in the wet season and 2200 cm(-3) in the dry season. At the impacted site (PVH), aerosol loadings were one order of magnitude higher (PM2.5 of 10.2 +/- 9.0 microg m(-3) and 33.0 +/- 36.0 microg m(-3) in the wet and dry seasons, respectively). The aerosol number concentration at the impacted site ranged from 680 cm(-3) in the wet season up to 20 000 cm(-3) in the dry season. An aerosol chemical speciation monitor (ACSM) was deployed in 2013 at both sites, and it shows that organic aerosol account to 81% to the non-refractory PM1 aerosol loading at TT34, while biomass burning aerosols at PVH shows a 93% content of organic particles. Three years of filter-based elemental composition measurements shows that sulphate at the impacted site decreases, on average, from 12% of PM2.5 mass during the wet season to 5% in the dry season. This result corroborates the ACSM finding that the biomass burning contributed overwhelmingly to the organic fine mode aerosol during the dry season in this region. Aerosol light scattering and absorption coefficients at the TT34 site were low during the wet season, increasing by a factor of 5, approximately, in the dry season due to long range transport of biomass burning aerosols reaching the forest site in the dry season. Aerosol single scattering albedo (SSA) ranged from 0.84 in the wet season up to 0.91 in the dry. At the PVH site, aerosol scattering coefficients were 3-5 times higher in comparison to the TT34 site, an indication of strong regional background pollution, even in the wet season. Aerosol absorption coefficients at PVH were about 1.4 times higher than at the forest site. Ground-based SSA at PVH was around 0.92 year round, showing the dominance of scattering aerosol particles over absorption, even for biomass burning aerosols. Remote sensing observations from six AERONET sites and from MODIS since 1999, provide a regional and temporal overview. Aerosol Optical Depth (AOD) at 550 nm of less than 0.1 is characteristic of natural conditions over Amazonia. At the perturbed PVH site, AOD550 values greater than 4 were frequently observed in the dry season. Combined analysis of MODIS and CERES showed that the mean direct radiative forcing of aerosols at the top of the atmosphere (TOA) during the biomass burning season was -5.6 +/- 1.7 W m(-2), averaged over whole Amazon Basin. For high AOD (larger than 1) the maximum daily direct aerosol radiative forcing at the TOA was as high as -20 W m(-2) locally. This change in the radiation balance caused increases in the diffuse radiation flux, with an increase of Net Ecosystem Exchange (NEE) of 18-29% for high AOD. From this analysis, it is clear that land use change in Amazonia shows alterations of many atmospheric properties, and these changes are affecting the functioning of the Amazonian ecosystem in significant ways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impacts of biomass burning emissions and land use change on Amazonian atmospheric phosphorus cycling and deposition

[1] Phosphorus (P) availability constrains both carbon uptake and loss in some of the world’s most productive ecosystems. In some of these regions, atmospheric aerosols appear to be an important, if not dominant, source of new P inputs. For example, previous work suggests that mineral aerosols from North Africa bring significant amounts of new phosphorus to the P-impoverished soils of the Amazo...

متن کامل

Aerosol and precipitation chemistry in a remote site in Central Amazonia: the role of biogenic contribution

A long-term (2–3 years) measurement of aerosol and precipitation chemistry was carried out in a remote site in Central Amazonia, Balbina, (1 • 55 ′ S, 59 • 29 ′ W, 174 m above sea level), about 200 km north of Manaus city. Aerosols were sampled using stacked filter units (SFU), which separate fine (d<2.5 µm) and coarse mode 5 (2.5 µm<d<10.0 µm). Filters were analyzed for particulate mass (PM), ...

متن کامل

Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia

[1] Ensemble simulations of a regional climate model (RegCM3) forced by aerosol radiative forcing suggest that biomass burning aerosols can work against the seasonal monsoon circulation transition, thus re-enforce the dry season rainfall pattern for Southern Amazonia. Strongly absorbing smoke aerosols warm and stabilize the lower troposphere within the smoke center in southern Amazonia (where a...

متن کامل

Direct and semi-direct impacts of absorbing biomass burning aerosol on the climate of southern Africa: a Geophysical Fluid Dynamics Laboratory GCM sensitivity study

Tropospheric aerosols emitted from biomass burning reduce solar radiation at the surface and locally heat the atmosphere. Equilibrium simulations using an atmospheric general circulation model (GFDL AGCM) indicate that strong atmospheric absorption from these particles can cool the surface and increase upward motion and low-level convergence over southern Africa during the dry season. These cha...

متن کامل

Rainforest-initiated wet season onset over the southern Amazon.

Although it is well established that transpiration contributes much of the water for rainfall over Amazonia, it remains unclear whether transpiration helps to drive or merely responds to the seasonal cycle of rainfall. Here, we use multiple independent satellite datasets to show that rainforest transpiration enables an increase of shallow convection that moistens and destabilizes the atmosphere...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Faraday discussions

دوره 165  شماره 

صفحات  -

تاریخ انتشار 2013